direct product, metabelian, supersoluble, monomial, A-group
Aliases: C3×Dic32, C33⋊4C42, C62.102D6, C6.30(S3×C12), C3⋊Dic3⋊3C12, C32⋊3(C4×C12), C3⋊1(Dic3×C12), C6.3(C6×Dic3), (C3×Dic3)⋊2C12, C62.17(C2×C6), (C6×Dic3).9C6, C6.34(S3×Dic3), C32⋊8(C4×Dic3), (C6×Dic3).20S3, (C32×Dic3)⋊5C4, (C3×C62).1C22, C6.25(C6.D6), (C2×C6).66S32, C22.3(C3×S32), C2.2(C3×S3×Dic3), (C3×C6).60(C4×S3), (C2×C6).21(S3×C6), (C3×C3⋊Dic3)⋊1C4, (C3×C6).21(C2×C12), (C2×C3⋊Dic3).5C6, (C6×C3⋊Dic3).1C2, (Dic3×C3×C6).10C2, C2.2(C3×C6.D6), (C32×C6).26(C2×C4), (C2×Dic3).4(C3×S3), (C3×C6).47(C2×Dic3), SmallGroup(432,425)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C3×Dic32 |
Generators and relations for C3×Dic32
G = < a,b,c,d,e | a3=b6=d6=1, c2=b3, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 448 in 178 conjugacy classes, 72 normal (16 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2×C4, C32, C32, C32, Dic3, Dic3, C12, C2×C6, C2×C6, C2×C6, C42, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, C62, C62, C62, C4×Dic3, C4×C12, C32×C6, C32×C6, C6×Dic3, C6×Dic3, C2×C3⋊Dic3, C6×C12, C32×Dic3, C3×C3⋊Dic3, C3×C62, Dic32, Dic3×C12, Dic3×C3×C6, C6×C3⋊Dic3, C3×Dic32
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, Dic3, C12, D6, C2×C6, C42, C3×S3, C4×S3, C2×Dic3, C2×C12, C3×Dic3, S32, S3×C6, C4×Dic3, C4×C12, S3×Dic3, C6.D6, S3×C12, C6×Dic3, C3×S32, Dic32, Dic3×C12, C3×S3×Dic3, C3×C6.D6, C3×Dic32
(1 5 3)(2 6 4)(7 9 11)(8 10 12)(13 17 15)(14 18 16)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 45 47)(44 46 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 30 4 27)(2 29 5 26)(3 28 6 25)(7 36 10 33)(8 35 11 32)(9 34 12 31)(13 20 16 23)(14 19 17 22)(15 24 18 21)(37 44 40 47)(38 43 41 46)(39 48 42 45)
(1 14 5 18 3 16)(2 15 6 13 4 17)(7 44 11 48 9 46)(8 45 12 43 10 47)(19 26 21 28 23 30)(20 27 22 29 24 25)(31 41 33 37 35 39)(32 42 34 38 36 40)
(1 42 18 36)(2 37 13 31)(3 38 14 32)(4 39 15 33)(5 40 16 34)(6 41 17 35)(7 27 48 24)(8 28 43 19)(9 29 44 20)(10 30 45 21)(11 25 46 22)(12 26 47 23)
G:=sub<Sym(48)| (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,45,47)(44,46,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,30,4,27)(2,29,5,26)(3,28,6,25)(7,36,10,33)(8,35,11,32)(9,34,12,31)(13,20,16,23)(14,19,17,22)(15,24,18,21)(37,44,40,47)(38,43,41,46)(39,48,42,45), (1,14,5,18,3,16)(2,15,6,13,4,17)(7,44,11,48,9,46)(8,45,12,43,10,47)(19,26,21,28,23,30)(20,27,22,29,24,25)(31,41,33,37,35,39)(32,42,34,38,36,40), (1,42,18,36)(2,37,13,31)(3,38,14,32)(4,39,15,33)(5,40,16,34)(6,41,17,35)(7,27,48,24)(8,28,43,19)(9,29,44,20)(10,30,45,21)(11,25,46,22)(12,26,47,23)>;
G:=Group( (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,45,47)(44,46,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,30,4,27)(2,29,5,26)(3,28,6,25)(7,36,10,33)(8,35,11,32)(9,34,12,31)(13,20,16,23)(14,19,17,22)(15,24,18,21)(37,44,40,47)(38,43,41,46)(39,48,42,45), (1,14,5,18,3,16)(2,15,6,13,4,17)(7,44,11,48,9,46)(8,45,12,43,10,47)(19,26,21,28,23,30)(20,27,22,29,24,25)(31,41,33,37,35,39)(32,42,34,38,36,40), (1,42,18,36)(2,37,13,31)(3,38,14,32)(4,39,15,33)(5,40,16,34)(6,41,17,35)(7,27,48,24)(8,28,43,19)(9,29,44,20)(10,30,45,21)(11,25,46,22)(12,26,47,23) );
G=PermutationGroup([[(1,5,3),(2,6,4),(7,9,11),(8,10,12),(13,17,15),(14,18,16),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,45,47),(44,46,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,30,4,27),(2,29,5,26),(3,28,6,25),(7,36,10,33),(8,35,11,32),(9,34,12,31),(13,20,16,23),(14,19,17,22),(15,24,18,21),(37,44,40,47),(38,43,41,46),(39,48,42,45)], [(1,14,5,18,3,16),(2,15,6,13,4,17),(7,44,11,48,9,46),(8,45,12,43,10,47),(19,26,21,28,23,30),(20,27,22,29,24,25),(31,41,33,37,35,39),(32,42,34,38,36,40)], [(1,42,18,36),(2,37,13,31),(3,38,14,32),(4,39,15,33),(5,40,16,34),(6,41,17,35),(7,27,48,24),(8,28,43,19),(9,29,44,20),(10,30,45,21),(11,25,46,22),(12,26,47,23)]])
108 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 6A | ··· | 6F | 6G | ··· | 6X | 6Y | ··· | 6AG | 12A | ··· | 12P | 12Q | ··· | 12AN | 12AO | ··· | 12AV |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 3 | ··· | 3 | 9 | 9 | 9 | 9 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
108 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | - | + | + | - | + | |||||||||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C12 | C12 | S3 | Dic3 | D6 | C3×S3 | C4×S3 | C3×Dic3 | S3×C6 | S3×C12 | S32 | S3×Dic3 | C6.D6 | C3×S32 | C3×S3×Dic3 | C3×C6.D6 |
kernel | C3×Dic32 | Dic3×C3×C6 | C6×C3⋊Dic3 | Dic32 | C32×Dic3 | C3×C3⋊Dic3 | C6×Dic3 | C2×C3⋊Dic3 | C3×Dic3 | C3⋊Dic3 | C6×Dic3 | C3×Dic3 | C62 | C2×Dic3 | C3×C6 | Dic3 | C2×C6 | C6 | C2×C6 | C6 | C6 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 2 | 8 | 4 | 4 | 2 | 16 | 8 | 2 | 4 | 2 | 4 | 8 | 8 | 4 | 16 | 1 | 2 | 1 | 2 | 4 | 2 |
Matrix representation of C3×Dic32 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
0 | 0 | 0 | 0 | 5 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 | 0 | 0 |
8 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,5,0,0,0,0,5,0],[1,12,0,0,0,0,1,0,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,8,0,0,0,0,0,8,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;
C3×Dic32 in GAP, Magma, Sage, TeX
C_3\times {\rm Dic}_3^2
% in TeX
G:=Group("C3xDic3^2");
// GroupNames label
G:=SmallGroup(432,425);
// by ID
G=gap.SmallGroup(432,425);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,92,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^6=d^6=1,c^2=b^3,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations